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WELCOME

If you do not have access to 
Eduroam, any visitor to the building 
just needs to select the ‘The Cloud’ 
wifi SSID. If you have used this 
on your device in other places 
(e.g. stations, pubs, event venues 
etc) then you will already have 
registered; if you are new to it then 
open a web browser and it takes 
you to a registration page after 
which you are connected.

WIFI

It is a great pleasure to host you for the 10th event in the conference series 
on Algebraic Topology: Methods, Computation, and Science (ATMCS10). 
We follow the strong tradition in this series, that started over twenty years 
ago in Stanford, of bringing together leading established researchers and 
young scientists in this emerging discipline, providing an opportunity for 
the exchange of knowledge and the development of new ideas.  After the 
ATMCS09 had to be moved on line two years ago, we feel fortunate to be 
able to hold this meeting in person, and bring the community together 
after a long time.

There are many elements that have to come together for a successful 
conference. We are grateful to all our speakers and poster presenters, 
and to our Scientific Committee that selected them after careful 
consideration. It is an exciting programme and we are looking forward 
to the talks and posters. The conference is sponsored by the Centre for 
Topological Data Analysis, and you will find among the participants many 
Oxford members of the Centre in conference T-shirts ready to help you; 
we thank all our young helpers and colleagues for their support. We also 
like to thank Matt Kahle for his lead on the NSF application through which 
many of our participants from the US are supported. Our special personal 
thanks go to Nicola Kirkham who many of you will have corresponded 
with; she has been the bedrock of the conference office. Last but not least 
we thank you all for coming to Oxford.

We wish you a stimulating and productive week here at the Mathematical 
Institute in Oxford.

Prof. Ulrike Tillmann FRS and Prof. Heather Harrington 
Directors of the Centre of Topological Data Analysis, and local organisers



BREAKFAST
 Served 8.30 - 9.30am in AWB Mezzanine

Alden’s Butchers’ cured bacon bap
Alden’s Butchers’ sausage bap
Roast field mushroom ciabatta (vg) 
Coffee, tea and herbal
Selection of juices

Butter croissant (v) 
Mini Danish pastries, butter, and 
fruit preserves (v)
Coconut yoghurt with fruit 
compote (vg)
Coffee, tea and herbal
Selection of juices

A selection of butter croissants 
and bagels (v)
Coconut yoghurt with seasonal 
fruit compote (vg) 
Smoked salmon, smoked ham and 
a selection of British cheese
Freshly baked breads (v) 
Butter, and fruit preserves 
Coffee, tea and herbal
Selection of juices

Breakfast Boards to share 3-4 
people
Coconut yoghurt, large croissants, 
sliced fruit, fresh orange juice 
Honey mustard glazed ham, 
mature cheddar, butter croissants, 
overnight oats, selection of sliced 
fruits, artisan demi-baguettee

MONDAY TUESDAY

WEDNESDAY THURSDAY



LUNCH
 Recommendations of local places to eat

BRANCA
111 Walton St, Oxford OX2 6AJ
Vibrant Italian eatery with 
exposed bricks and a terrace 
serving small plates and stone-
baked pizza.

JERICHO CAFE
112 Walton St, Oxford OX2 6AJ
Your friendly neighbourhood 
family-run cafe

VAULTS & GARDEN CAFE
1 Radcliffe Sq University Church, 
Oxford OX1 4AJ
Simple organic food served in a 
quintessential Oxford setting.

University Parks
S Parks Rd, Oxford OX1 3RF

Wellington Square Gardens
Oxford, OX1 2JD

Port Meadow
Off Walton Well Road, OX2 6ED

TooGoodToGo - Free app
From supermarkets to sushi, 
nearby stores that have unsold, 
surplus food up for grabs. 
Rescue surprise bags filled with 
delicious food sold at 1/3 price.

PICNIC IN THE PARK



DINNER
We have reserved a few tables for you at our favourite 
restaurants in the area. Just pick where you’d like to 
go, then sign up at the registration desk.

JAMAL’S 
107 - 108  Walton St, OX2 6AJ
Quality Indian curries

MAMA MIA JERICHO 
102 Walton St, Oxford OX2 6EB
Italian Restaurant & Pizzeria

PIERRE VICTORIE 
9 Little Clarendon St, OX1 2HP
Classic French bistro

RICKETY PRESS 
67 Cranham St, OX2 6DE
Pub Food & great pizza

ZHENG 
82 Walton St, Oxford OX2 6EA
South-east Asian fusion food

THE VICTORIA
90 Walton St, Oxford OX2 6EB
Classic period tavern with food and 
garden

THE GARDENERS ARMS
39 Plantation Rd, Oxford OX2 6JE
Buzzy pub with a garden and veggie 
food

GIGGLING SQUID
55 Walton St, Oxford OX2 6AE
Thai restaurant

THE WHITE RABBIT
21 Friars Entry, Oxford OX1 2BY
Great beers & Amazing pizza

MONDAY WEDNESDAY





9.30-10.30 HERBERT EDELSBRUNNER 
Depth in arrangements: Dehn--Sommerville--Euler relations with applications

BREAK

11.00-12.00 ULRICH BAUER 
Persistent homology for functionals

GROUP PHOTO/LUNCH

2.00-3.00 ERIC SEDGEWICK
How to draw a knot

BREAK

3.30-4.30 KATHARINE TURNER
Theory and applications of the Persistent Homology Transform and variants - an overview

4.45 POSTER SESSION & DRINKS RECEPTION
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Local Inference of Morse Indices from Finite Point Samples

KA MAN YIM1 AND VIDIT NANDA2

Mathematical Institute, University of Oxford

Abstract. The Morse index associated to a critical point of a smooth function is a local quantity
that is equal to the number of negative eigenvalues of the Hessian evaluated at that point. As
second derivatives might be dif�cult to compute or unavailable in real world contexts, one can use
the fundamental results of Morse theory to bypass the need for second derivatives. Unfortunately,
this involves computing the relative homology of pairs of sub-level sets, which is no longer a local
quantity. In this talk, we propose a new algorithm which combines the best of both worlds by
reducing the computation of the Morse index to a homology inference problem. The key ingredient
is the theory of Gromoll-Meyer pairs, which facilitates this transition from global sublevel sets to
local submanifolds with corners. Finally, we describe an upper bound on the density of sample
points needed in order to recover the Morse index.

E-mail address: 1yim@maths.ox.ac.uk, 2nanda@maths.ox.ac.uk.
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Title: Quantifying topological features in microscopy images
Abstract: Microscopy images from biological experiments often depict rich topological and
geometric structure. Convolutional neural networks are natural candidates for extracting
these features, but their remarkable success has mostly centered on automating tasks that
human experts can already perform. Interpretable analyses that aid experts in generating
new hypotheses from small experiments remain challenging.

In this talk, I will present new topological data analysis (TDA) image features and a
machine-learning-based image analysis pipeline we have introduced, TDAExplore, which
performs “weakly supervised” image segmentation of microscopy image data. The pipeline
takes grayscale images labeled by experimental group (e.g. control and modified) as input.
As output it produces a pixel mask for each image that highlights regions which exhibit
topological structures characteristic of each group.

Our TDA image features take advantage of several TDA methods to extract robust
information from small image sub-regions: persistent local homology from point clouds, per-
sistence landscapes, and alpha complexes. This combination was engineered for inexpensive
computations and the pipeline is highly parallelizable. For example, a typical 8 CPU lab
computer running TDAExplore can analyze 70 high resolution images in less than 15 min-
utes using 5GB of memory.

I will also discuss results from applying our methodology to fluorescence microscopy
images of cells’ actin cytoskeletons. We investigated the effects of experimentally-induced
regulatory changes on actin morphology. The results correctly recapitulate the effects of
well-studied regulatory changes and suggest new hypotheses for others. We also obtained
whole image classification results that compare favorably with previous studies of benchmark
datasets. These datasets feature a variety of microscopy modes and subjects.

Our pipeline demonstrates how modern TDA and machine learning methods can provide
accessible and interpretable tools for practitioners in a “small data” setting. TDAExplore is
available as R packages with both programmatic and command line interfaces.

Pixel masks of topological scores learned by TDAExplore from actin cytoskeleton data.
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Authors: Parker Edwards1, Kristen Skruber1 (U. California, San Francisco, Kristen.

Skruber@ucsf.edu), Nikola Milićević (Pennsylvania State U., nqm5625@psu.edu), James B.
Heidings (U. Florida, jimbo987@ufl.edu), Tracy-Ann Read (Augusta U., tread@augusta.
edu), Peter Bubenik2 (U. Florida, peter.bubenik@ufl.edu), Eric Vitriol2 (Augusta U.,
evitriol@augusta.edu)

1first authors
2corresponding authors

Ordering Topological Descriptor Types
Brittany Terese Fasy – Montana State University, brittany.fasy@montana.edu
Samuel Micka – Western Colorado University, samicka@western.edu
David Millman – Montana State University, david.millman@montana.edu
Anna Schenfisch – Montana State University, annaschenfisch@montana.edu

Given a simplicial complex embedded in $R^d$, there exist finite sets of topological descriptors
generated by lower-star filtrations in various directions that, together, faithfully represent the
complex. This fact is the foundation of many recent developments in shape representation and
comparison. By computing e.g., Euler characteristic curves (ECCs) that arise from filtrations
over shapes and some set of standardized directions, the shapes can be compared through the
comparison of the ECCs, and even through putting these ECCs in a machine learning pipeline.

Given a simplicial complex and a set of descriptors that faithfully represents it, there is always a
minimum cardinality for such a set. Generally, this exact minimum is difficult to know. However,
these minimums can be discussed and bounded theoretically, which serves as a measure for how
powerful a descriptor type is.

With this motivation, we build a framework through which descriptor types---Euler characteristic
curves, persistence diagrams, etc.---can be ordered by their ability to represent shapes.
Specifically, we use the size of faithful sets of parameterized descriptors to define this ordering.
We then partially order six common descriptor types and discuss the benefits of viewing this
work through the lens of constructible cosheaves over a simplicially stratified "sphere of
directions." We also discuss a simplicial complex construction for which the minimum set of
augmented descriptors needed to form a faithful set is surprisingly large.



Multivariate Normal Approximations for Simplex Counts

in Random Complexes

Tadas Temčinas∗, Vidit Nanda†, Gesine Reinert‡

January 2022

Acyclic partial matchings on simplicial complexes play an important role in topological data
analysis by facilitating efficient computation of (persistent) homology groups [5, 8, 6, 7]. In this
work we describe probabilistic properties of critical simplex counts for such (lexicographical)
matchings on clique complexes of Bernoulli random graphs. This random variable, which arises
very naturally in stochastic topology [3, 2], has been poorly studied from a distributional
approximation perspective. To the best of our knowledge, only the expected value has been
calculated [1, Section 8].

In order to understand the distribution of critical simplex counts, we provide an abstract
multivariate central limit theorem using Stein’s method [4]. As a consequence of this general
result, we are able to extract central limit theorems not only for critical simplex counts, but
also for simplex counts in the link of a fixed simplex in a random clique complex. The results
quantify the quality of an appropriate normal approximation when the number of vertices in
the random complex is finite. Also, the hypotheses of the theorems allow different parameters
of the model to depend on each other, giving results in a wide range of parameter combinations.

This talk is mainly based on the recent work [9].

∗Department of Statistics, University of Oxford, tadas.temcinas@keble.ox.ac.uk
†Mathematical Institute, University of Oxford, vidit.nanda@maths.ox.ac.uk
‡Department of Statistics, University of Oxford, reinert@stats.ox.ac.uk

Figure 1: Lexicographical matching given by the red arrows. Critical simplices are highlighted
in blue.
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The Gromov-Hausdorff distance between spheres.

Facundo Mémoli

Abstract

The Gromov-Hausdorff distance is a fundamental tool in Riemanian geometry, due the
topology it generates, and also in applied geometry and topological data analysis, as a metric
for expressing the stability of the persistent homology of geometric data (e.g. via the Vietoris-
Rips filtration). Whereas it is often easy to estimate the value of the distance between two
given metric spaces, its precise value is rarely easy to determine. Some of the best estimates
follow from considerations actually related to both the stability of persistent homology and to
Gromov’s filling radius. However, these turn out to be non-sharp.

In this talk I will describe these estimates and also results which permit calculating the
precise value of the Gromov-Hausdorff between certain pairs of spheres (endowed with their
geodesic distance). These results involve lower bounds, which arise from a certain version
of the Borsuk-Ulam theorem that is applicable to discontinuous maps, and from matching
upper bounds which are induced from specialized constructions of “correspondences” between
spheres.

Persistent homology using filtered closure spaces

Peter Bubenik

Abstract

We develop persistent homology in the setting of filtered (Cech) closure spaces. Examples
of filtered closure spaces include filtered topological spaces, metric spaces, weighted graphs,
and weighted directed graphs. We use various products and intervals for closure spaces to
obtain six homotopy theories, six cubical singular homology theories and three simplicial
singular homology theories. Applied to filtered closure spaces, these homology theories produce
persistence modules. We extend the definition of Gromov-Hausdorff distance to filtered closure
spaces and use it to prove that these persistence modules and their persistence diagrams are
stable. We also extend the definitions Vietoris-Rips and Cech complexes to give functors on
closure spaces and prove that their persistent homology is stable. The Vietoris-Rips functor
has a left adjoint which we call the star functor; in contrast the Cech functor does not have a
left or right adjoint.

This is joint work with Nikola Milicevic.





Applying topological data analysis to pure mathematics

Leonard Polterovich

Abstract

Topological persistence provides new tools for studying oscillations of functions, e.g., eigen-
functions of the Laplacian, and functionals, e.g., the action functional in classical mechanics.
This leads to a number of applications to function theory, spectral geometry, symplectic topol-
ogy, and dynamical systems.

Based on joint works with Lev Buhovsky, Michael Entov, Jordan Payette, Iosif Polterovich,
Egor Shelukhin, and Vukasin Stojisavljevic.

THE SHIFT-DIMENSION: AN ALGEBRAIC INVARIANT OF

MULTIPERSISTENCE MODULES

WOJCIECH CHACHÓLSKI, RENÉ CORBET, AND ANNA-LAURA SATTELBERGER

Persistent homology of a one-parameter filtration is algebraically well understood; by a basic
structure theorem from algebra, its homology module is uniquely determined by its barcode [6]
from which one reads the birth and death times of topological features. The study of multi-
filtered simplicial complexes and their homology [2] allows to extract finer information from
data, but is algebraically intricate. In contrast to the case of a single parameter, there is no
discrete complete invariant: as pointed out in [2], the respective moduli space is not zero-
dimensional. Moreover, one encounters a lack of stable, algorithmic invariants.

In [3], we investigate an invariant of multipersistence modules that is based on the hierarchi-
cal stabilization of discrete invariants of [5]. This construction turns a discrete invariant into
a measurable real-valued function in a stable way. The hierarchical stabilization of the zeroth
total multigraded Betti number β0 is commonly referred to as stable rank. In our article, we
focus on the stabilization of β0 in the direction of a vector. We call the resulting invariant the
shift-dimension of M. We investigate its algebraic properties such as (non)-additivity and the
behavior for short exact sequences. The shift-dimension naturally translates to an invariant of
multigraded modules over the multivariate polynomial ring.

The computation of the shift-dimension is algorithmic, but in general NP-hard [5]. We
give a linear-time algorithm for interval modules in the bivariate case. Direct sums of such
modules arise as homology of certain multifiltrations [4] or as approximation of arbitrary finitely
presented multipersistence modules in the bivariate case [1].

In summary, we provide a new invariant of persistence modules in the multivariate case
which might serve as a feature map for machine learning tasks. It would be my great honor and
pleasure to present our work in the section “Multivariate Persistent Homology” at ATMCS10.
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Abstract

Topological Learning from Dynamics on Data
Authors:
Dr. Marzieh Eidi, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany,
meidi@mis.mpg.de
Prof. Dr. Jürgen Jost, Max Planck Institute for Mathematics in the sciences, Germany and Santa
Fe Institute, USA, jjost@mis.mpg.de

Topology concerns with those parameters which are preserved under continuous deformation of a
space. The number of k-dimensional holes is one main such parameter and computing them has
been a challenging question for many years; we are looking for ways to reduce the size of data while
not losing its main global (Topological) features: in this regard, the fundamental theories presented
by Morse (1925) and Floer (1988) for gradient vector fields and their corresponding discrete versions
(originally introduced by Forman, 1998) have become very main tools for qualitative shape analysis
for both smooth and discrete settings in the past decade. However a very main challenge in both
theory and applications is to generalise these powerful theories and methods to non-gradient vector
fields where the (isolated) invariant sets are more complicated than critical points (simplexes). In
this seminar, I will talk about how to recover homology groups of both smooth and combinatorial
settings, in a unifying perspective, based on dynamical systems operating on the object where we
can have periodic orbits as well as critical points. This is the first step to generalise our methods
from gradient vector fields to general vector fields ( which also arise in variety of applications) for
both smooth and discrete structures.
This is based on a work under the supervision of professor Jost; https://arxiv.org/abs/2105.02567

HOMOLOGICAL PERCOLATION ON A TORUS

PAUL DUNCAN

Two central objects of study in percolation theory are site percolation
and bond percolation, which are the random graphs induced by taking
each vertex or edge respectively, independently at random with proba-
bility p from the underlying graph. We consider the topology of random
cell complexes that generalize each of these models within a large torus
T

d. Bond percolation in the integer lattice Z
d, is generalized to pla-

quette percolation, in which the full (i − 1)-hypercubical skeleton is
included, and then i-cells are added randomly. Site percolation on the
triangular lattice is equivalent to a random subset of cells in the hexag-
onal tiling of the plane, which can be generalized to a random subset of
the permutohedral tiling of higher dimensional space. Bobrowski and
Skraba defined homological percolation within a random subspace as
the appearance of a “giant cycle”, or a cycle in the random subcom-
plex that remains nontrivial under the map on homology induced by
inclusion into the ambient space. We show that homological percola-
tion in our models exhibits a sharp phase transition for each dimension
at which all possible giant cycles appear, with a 1-dimensional thresh-
old that is consistent with classical percolation. Moreover, in the case
of percolation in dimension i = d/2, the phase transition appears at
p = 1/2, a higher dimensional analogue to the classical Harris-Kesten
theorem. This is joint work with Matthew Kahle at the Ohio State Uni-
versity (mkahle@math.osu.edu) and Benjamin Schweinhart at George
Mason University (bschwei@gmu.edu).
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The Generalized Persistence Diagram Encodes the
Bigraded Betti Numbers

Woojin Kim1 and Samantha Moore2

1Department of Mathematics, Duke University*

2Department of Mathematics, University of North Carolina at Chapel Hill†

February 1, 2022

Abstract

We show that the generalized persistence diagram (introduced by Kim and Mémoli) en-
codes the bigraded Betti numbers of finite 2-parameter persistence modules [1]. More in-
terestingly, we show that the bigraded Betti numbers can be visually read off from the gen-
eralized persistence diagram in a manner parallel to how the bigraded Betti numbers are
extracted from interval decomposable modules. Our results imply that all of the invariants
of 2-parameter persistence modules that are computed by the software RIVET are encoded
in the generalized persistence diagram. In addition, we verify that a certain recent invari-
ant of finite 2-parameter persistence modules that was introduced by Asashiba et al. also
encodes the bigraded Betti numbers.

References

[1] W. Kim and S. Moore. The generalized persistence diagram encodes the bigraded betti num-
bers. arXiv preprint arXiv:2111.02551, 2021.

*woojin@math.duke.edu
†scasya@live.unc.edu
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Extracting Persistent Clusters in Dynamic Data via Möbius inversion

Woojin Kim1 and Facundo Mémoli2

1Department of Mathematics, Duke University, woojin@math.duke.edu
2Department of Mathematics and Department of Computer Science and Engineering, The Ohio

State University, facundo.memoli@gmail.com

January 30, 2022

Abstract

Identifying and representing clusters in time-varying network data is of particular importance when study-
ing collective behaviors emerging in nature, in mobile device networks or in social networks. Based on com-
binatorial, categorical, and persistence theoretic viewpoints, we establish a stable functorial pipeline for the
summarization of the evolution of clusters in a time-varying network.

We first construct a complete summary of the evolution of clusters in a given time-varying network over
a set of entities X of which takes the form of a formigram. This formigram can be understood as a certain
Reeb graph R which is labeled by subsets of X . By applying Möbius inversion to the formigram in two
different manners, we obtain two dual notions of diagram: the maximal group diagram and the persistence
clustergram, both of which are in the form of an ‘annotated’ barcode. The maximal group diagram consists of
time intervals annotated by their corresponding maximal groups — a notion due to Buchin et al., implying
that we recognize the notion of maximal groups as a special instance of generalized persistence diagram
by Patel. On the other hand, the persistence clustergram is mostly obtained by annotating the intervals in
the zigzag barcode of the Reeb graph R with certain merging/disbanding events in the given time-varying
network.

We show that both diagrams are complete invariants of formigrams (or equivalently of trajectory grouping
structure by Buchin et al.) and thus contain more information than the Reeb graph R. This is joint work with
Facundo Mémoli. A preprint is available in https://arxiv.org/abs/1712.04064 [v5].



TOPOLOGY OF RANDOM 2-DIMENSIONAL CUBICAL

COMPLEXES

MATTHEW KAHLE, ELLIOT PAQUETTE, AND ÉRIKA ROLDÁN

Abstract. We study a natural model of random 2-dimensional cubical
complex which is a subcomplex of an n-dimensional cube, and where
every possible square 2-face is included independently with probability
p. Our main result exhibits a sharp threshold p = 1/2 for homology
vanishing as n → ∞. This is a 2-dimensional analogue of the Burtin
and Erdős–Spencer theorems characterizing the connectivity threshold
for random graphs on the 1-skeleton of the n-dimensional cube.

Our main result can also be seen as a cubical counterpart to the
Linial–Meshulam theorem for random 2-dimensional simplicial complexes.
However, the models exhibit strikingly different behaviors. We show
that if p > 1 − √

1/2 ≈ 0.2929, then with high probability the fun-
damental group is a free group with one generator for every maximal
1-dimensional face. As a corollary, homology vanishing and simple con-
nectivity have the same threshold, even in the strong “hitting time”
sense. This is in contrast with the simplicial case, where the thresh-
olds are far apart. The proof depends on an iterative algorithm for
contracting cycles — we show that with high probability the algorithm
rapidly and dramatically simplifies the fundamental group, converging
after only a few steps.

Extended Abstract: Main Results. Denote the n-dimensional cube by
Qn = [0, 1]n, and the set of vertices of the n-dimensional cube by Qn

0 . This
makes Qn

0 = {0, 1}n, which is the set of all n-tuples with binary entries.
More generally, denote by Qn

k the k-skeleton of Qn. For example, Qn
1 is

the graph with vertex set Qn
0 and an edge (a 1-face) between two vertices

if and only if they differ by exactly one coordinate. Define the random 2-
dimensional cubical complex Q2(n, p) as having 1-skeleton Qn

1 and including
each 2-dimensional face of Qn independently with probability p.

Date: January 31, 2022.
Key words and phrases. stochastic topology, cubical complexes, random groups.
The first author was supported by NSF DMS #1547357, DMS #2005630, and CCF

#1740761. He is also grateful to the Simons Foundation for a Simons Fellowship, and to
the Deutsche Forschungsgemeinschaft (DFG) for a Mercator Fellowship.

The third author was supported in part by NSF-DMS #1352386 and NSF-DMS
#1812028. She has also received funding from the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sk�lodowska-Curie grant agreement No
754462.
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2 MATTHEW KAHLE, ELLIOT PAQUETTE, AND ÉRIKA ROLDÁN

The space Q2(n, p) is a cubical analogue of the random simplicial complex
Y2(n, p) introduced by Linial and Meshulam in [3], whose theory is well–
developed. The random complex Y2(n, p) is defined by taking the complete
1-skeleton of the n-dimensional simplex Δn, and including into it each 2-face
independently and with probability p. In this way, Q2(n, p) is constructed
in exactly the same way as Y2(n, p), except that the underlying polytope
Δn is replaced by Qn. The space Q2(n, p) is also a 2-dimensional version
of the random cubical graph studied by Burtin [1], Erdős and Spencer [2],
and others. More precisely, let Q(n, p) denote the random subgraph defined
by including all vertices of Qn, i.e. Qn

0 , and including each edge in Qn
1 in-

dependently with probability p. One can view Q(n, p) as a natural cubical
analogue of G(n, p), the Bernoulli or Erdős-Rényi random graph. In the
rest of this abstract we state our main results.

Theorem 0.1. With Q ∼ Q2(n, p) if p > 1/2, then π1(Q) = 0 asymp-
totically almost surely. Conversely, if p ≤ 1/2, then whp there are finitely
generated groups G and F so that π1(Q) ∼= G ∗ F and where F is a free
group of rank at least 2.

Theorem 0.2. For p > 1− (12)
1/2, with high probability, for Q ∼ Q2(n, p)

π1(Q) ∼= (Z ∗ Z ∗ · · · ∗ Z)
︸ ︷︷ ︸

N

,

where N denotes the number of isolated 1-faces in Q.
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QUANTIFYING THE HOMOLOGY OF PERIODIC SIMPLICIAL COMPLEXES

ADAM ONUS1, SCHOOL OF MATHEMATICAL SCIENCES, QUEEN MARY UNIVERSITY OF LONDON

AND VANESSA ROBINS2, RESEARCH SCHOOL OF PHYSICS, AUSTRALIAN NATIONAL UNIVERSITY

Spatially periodic point patterns are important scientific models, for example of atomic positions in crys-
talline materials. Associated periodic graphs and simplicial complexes also arise when modelling any large
homogeneous data set (c.f., [1, 4]). These infinite complexes are described efficiently using a finite quotient
space and translation group action. Both models stem from the familiar covering space relationship between
R

n and the n-dimensional torus.
Two eminent goals in studying the finite quotient spaces that arise from periodic simplicial complexes

include

‚ classification of finite representations, and
‚ extrapolation of topological structure from the quotient.

Classification is challenging because the translation group is not unique; this has been studied extensively
for the case of connected graphs (c.f., [3]). Structure extrapolation is complicated by the potential for
cycles in a periodic complex to disappear in the quotient space, or conversely for the quotient space to have
toroidal cycles which do not lift to a cycle in the periodic complex. This can cause weird effects such as
disconnected periodic complexes having connected quotient spaces, or contractible periodic complexes having
non-contractible quotient spaces.

The ultimate goal is to recover the homology of a periodic simplicial complex from a relatively small
quotient space and minimal additional data. We focus on how to identify and distinguish toroidal cycles in
a quotient space from true cycles of the periodic complex, and how to identify and construct cycles of the
periodic complex that become trivial in the quotient space.

In the case of periodic graphs we show that by endowing edges in a quotient graph with appropriate weights
in Z

d as per [2] we can entirely reconstruct the 0- and 1-dimensional homology. For higher dimensional
complexes there is no natural analogue of these weights, and instead we introduce a new application of
Mayer-Vietoris spectral sequences to provide a heuristic to identify toroidal cycles in periodic simplicial
complexes.
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Abstract

At the intersection of Topological Data Analysis and machine learning, the

field of cellular signal processing has advanced rapidly in recent years [1, 5]. In

this context, a signal is a (co)chain in a (co)chain complex endowed with a degree-

wise inner product, and is processed using the combinatorial Laplacian and its

associated Hodge decomposition.

The main goal of this paper is to reduce and reconstruct a based chain complex

together with a set of signals in such a way that minimizes their reconstruction er-

ror. Our approach is rooted in tools of algebraic discrete Morse theory [6], which is

able to efficiently generate deformation retracts that reduce the size of the complex

while preserving its global topological structure. For this reason, discrete Morse

theory has been widely used to speed up computations of (persistent) homology

by reducing the size of complexes [4].

In this paper, we explore how such deformation retracts compress and recon-

struct signals on the complex. Specifically, we prove that parts of a signal’s Hodge

decomposition are preserved under compression and reconstruction for specific

classes of discrete Morse deformation retracts of a given based chain complex.

Understanding Hodge decomposition of signals requires a careful study of how

the choice of algebraic decomposition – or base – of a based chain complex interacts

with the reconstruction of the Hodge decomposition components under discrete

Morse matchings. As part of this study, we show that any deformation retract of

a real finite-dimensional chain complex is equivalent to a Morse matching in some

base.

1



Finally, we provide an algorithm to compute Morse matchings that minimize

the reconstruction error for any inner product. We perform several experiments

that support our theoretical results and show that our algorithm significantly

outperforms randomly generated matchings. We believe that such algorithms

could be used in pooling layers of simplicial neural networks [2, 3].
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We study a model of random graph where vertices are n i.i.d. uniform
random points on the unit sphere Sd, and a pair of vertices is connected if
the geodesic distance between them is at least π − ε. We are interested in the
chromatic number of this graph as n tends to infinity.

Our main point is that if ε → 0 slowly enough as n → ∞, then topological
lower bounds on chromatic number are tight. The idea of using topological
obstructions to the chromatic number of graphs dates back to Lóvasz in 1978,
when he used such constructions to prove Kneser’s conjecture. This contrasts
with the situation studied by Kahle in 2007, where topological lower bounds are
not efficient for the chromatic number of Erdős–Rényi random graphs.

It is not too hard to see that if ε > 0 is small and fixed, then the chromatic
number is d + 2 with high probability. We show that this holds even if ε → 0
slowly enough. We quantify the rate at which ε can tend to zero and still
have the same chromatic number. The proof depends on combining topological
methods (namely the Lyusternik–Schnirelman–Borsuk theorem) with geometric
probability arguments. The rate we obtain is best possible, up to a constant
factor — if ε → 0 faster than this, we show that the graph is (d + 1)-colorable
with high probability.

Finally, we briefly discuss how this construction can be generalized to other
metric spaces where instead of having an antipodality action, we have a free
G-action, for any finite group G. In this setting, rather than the LSB-Theorem,
the topological obstructions arise from studing the induced G-action on the as-
sociated Hom complex.

Keywords: random graphs, topological combinatorics, Borsuk–Ulam.
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What are weather regimes? A topologist’s answer

Nina Otter

Abstract

It has long been suggested that the mid-latitude atmospheric circulation possesses what
has come to be known as “weather regimes”, which can roughly be categorised as regions of
phase space with above-average density. Their existence and behaviour have been extensively
studied in meteorology and climate science, due to their potential for drastically simplify-
ing the complex and chaotic mid-latitude dynamics. Several well-known, simple non-linear
dynamical systems have been used as toy-models of the atmosphere in order to understand
and exemplify such regime behaviour. Nevertheless, no agreed-upon and clear-cut definition
of a “regime” exists in the literature, and unambiguously detecting their existence in the
atmospheric circulation is often hindered by the high dimensionality of the system.

In this talk I will first give an overview of some of the approaches used to study and define
weather regimes. I will then proceed to propose a definition of weather regime that equates the
existence of regimes in a dynamical system with the existence of non-trivial topological struc-
ture of the system’s attractor. I will discuss how this approach is computationally tractable,
practically informative, and identifies the relevant regime structure across a range of examples.

This talk is based on joint work with Kristian Strommen, Matthew Chantry and Joshua
Dorrington.

Thoughts on Teaching Topology

Vin de Silva

Abstract

I have taught classes in topology for many years now. I will share some thoughts on how
I approach it, and how my teaching differs from what I experienced as an undergraduate in
the early 1990s, while drawing on what I experienced in primary school in the late 1970s. In
particular, I will outline a development of ideas in which homology theory seems to invent
itself, and in which cohomology theory is presented simultaneously in an essential way.
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