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WELCOME

If you do not have access to 
Eduroam, any visitor to the building 
just needs to select the ‘The Cloud’ 
wifi SSID. If you have used this 
on your device in other places 
(e.g. stations, pubs, event venues 
etc) then you will already have 
registered; if you are new to it then 
open a web browser and it takes 
you to a registration page after 
which you are connected.

WIFI

It is a great pleasure to host you for the 10th event in the conference series 
on Algebraic Topology: Methods, Computation, and Science (ATMCS10). 
We follow the strong tradition in this series, that started over twenty years 
ago in Stanford, of bringing together leading established researchers and 
young scientists in this emerging discipline, providing an opportunity for 
the exchange of knowledge and the development of new ideas.  After the 
ATMCS09 had to be moved on line two years ago, we feel fortunate to be 
able to hold this meeting in person, and bring the community together 
after a long time.

There are many elements that have to come together for a successful 
conference. We are grateful to all our speakers and poster presenters, 
and to our Scientific Committee that selected them after careful 
consideration. It is an exciting programme and we are looking forward 
to the talks and posters. The conference is sponsored by the Centre for 
Topological Data Analysis, and you will find among the participants many 
Oxford members of the Centre in conference T-shirts ready to help you; 
we thank all our young helpers and colleagues for their support. We also 
like to thank Matt Kahle for his lead on the NSF application through which 
many of our participants from the US are supported. Our special personal 
thanks go to Nicola Kirkham who many of you will have corresponded 
with; she has been the bedrock of the conference office. Last but not least 
we thank you all for coming to Oxford.

We wish you a stimulating and productive week here at the Mathematical 
Institute in Oxford.

Prof. Ulrike Tillmann FRS and Prof. Heather Harrington 
Directors of the Centre of Topological Data Analysis, and local organisers



BREAKFAST
 Served 8.30 - 9.30am in AWB Mezzanine

Alden’s Butchers’ cured bacon bap
Alden’s Butchers’ sausage bap
Roast field mushroom ciabatta (vg) 
Coffee, tea and herbal
Selection of juices

Butter croissant (v) 
Mini Danish pastries, butter, and 
fruit preserves (v)
Coconut yoghurt with fruit 
compote (vg)
Coffee, tea and herbal
Selection of juices

A selection of butter croissants 
and bagels (v)
Coconut yoghurt with seasonal 
fruit compote (vg) 
Smoked salmon, smoked ham and 
a selection of British cheese
Freshly baked breads (v) 
Butter, and fruit preserves 
Coffee, tea and herbal
Selection of juices

Breakfast Boards to share 3-4 
people
Coconut yoghurt, large croissants, 
sliced fruit, fresh orange juice 
Honey mustard glazed ham, 
mature cheddar, butter croissants, 
overnight oats, selection of sliced 
fruits, artisan demi-baguettee

MONDAY TUESDAY

WEDNESDAY THURSDAY



LUNCH
 Recommendations of local places to eat

BRANCA
111 Walton St, Oxford OX2 6AJ
Vibrant Italian eatery with 
exposed bricks and a terrace 
serving small plates and stone-
baked pizza.

JERICHO CAFE
112 Walton St, Oxford OX2 6AJ
Your friendly neighbourhood 
family-run cafe

VAULTS & GARDEN CAFE
1 Radcliffe Sq University Church, 
Oxford OX1 4AJ
Simple organic food served in a 
quintessential Oxford setting.

University Parks
S Parks Rd, Oxford OX1 3RF

Wellington Square Gardens
Oxford, OX1 2JD

Port Meadow
Off Walton Well Road, OX2 6ED

TooGoodToGo - Free app
From supermarkets to sushi, 
nearby stores that have unsold, 
surplus food up for grabs. 
Rescue surprise bags filled with 
delicious food sold at 1/3 price.

PICNIC IN THE PARK



DINNER
We have reserved a few tables for you at our favourite 
restaurants in the area. Just pick where you’d like to 
go, then sign up at the registration desk.

JAMAL’S 
107 - 108  Walton St, OX2 6AJ
Quality Indian curries

MAMA MIA JERICHO 
102 Walton St, Oxford OX2 6EB
Italian Restaurant & Pizzeria

PIERRE VICTORIE 
9 Little Clarendon St, OX1 2HP
Classic French bistro

RICKETY PRESS 
67 Cranham St, OX2 6DE
Pub Food & great pizza

ZHENG 
82 Walton St, Oxford OX2 6EA
South-east Asian fusion food

THE VICTORIA
90 Walton St, Oxford OX2 6EB
Classic period tavern with food and 
garden

THE GARDENERS ARMS
39 Plantation Rd, Oxford OX2 6JE
Buzzy pub with a garden and veggie 
food

GIGGLING SQUID
55 Walton St, Oxford OX2 6AE
Thai restaurant

THE WHITE RABBIT
21 Friars Entry, Oxford OX1 2BY
Great beers & Amazing pizza

MONDAY WEDNESDAY



24.6

EXCURSIONS
Sign up at the registration desk

BLENHEIM PALACE
9.15am - 2.15pm

Meet at AWB to take the coach to Blenheim 
Palace. Take a walk in Capability Brown’s 
gardens, and enjoy the annual flower festival. 
There is a cafe and restaurant in the palace, or 
you could take a picnic.

STONEHENGE & THE WHITE 
HORSE 
8.15am - 5pm

Meet at AWB to take the coach to the 
prehistoric monument on Salisbury Plain 
in Wiltshire, and on the way back visit the 
Bronze Age white horse and iron age hill fort in 
Uffington. 
The Stonehenge audio tour is now available to 
download for free. Please click here. 

WALKING TOUR OF OXFORD
9am (90 mins) 15 people max
10am (90mins) 15 peope max

Starting and ending at the Weston Library. On this 
walking tour you will see the interior of the Divinity 
School, the exterior of the Bodleian and Radcliffe 
Camera, and the streets surrounding the central 
Bodleian site. The tour guides are excellent.

OXFORD PUNT
10am-12pm

Meet at the Cherwell Boathouse for a 2 hour punt 
along the River Cherwell taking a view of Oxford 
colleges from the river.



9.30-10.30 HERBERT EDELSBRUNNER 
Depth in arrangements: Dehn--Sommerville--Euler relations with applications

BREAK

11.00-12.00 ULRICH BAUER 
Persistent homology for functionals

GROUP PHOTO/LUNCH

2.00-3.00 ERIC SEDGEWICK
How to draw a knot

BREAK

3.30-4.30 KATHARINE TURNER
Theory and applications of the Persistent Homology Transform and variants - an overview

4.45 POSTER SESSION & DRINKS RECEPTION

A
TM

C
S1

0
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9.30 - 10.30 ANDREW BLUMBERG
Probabilistic stability theorems for multiparameter persistent homology

BREAK

11.00 - 12.30 MICHAEL ADAMER
The magnitude vector of images

BENEDIKT FLUHR
Categorification of Extended Persistence 
Diagrams

SHREYA ARYA
A sheaf-theoretic construction of shape space

BARBARA GIUNTI 
Average complexity of persistence algorithms for 
clique filtrationsquintessential Oxford setting.

VADIM LEBOVICI 
Hybrid transforms of constructible functions 
with applications to multiparameter persistent 
magnitude

ALEXANDER WAGNER 
Distributed Persistence: Inverse Theorems and 
Dimensionality Reduction

IRIS YOON 
Persistent Extension and Analogous Bars: Data-
Induced Relations Between Persistence Barcodes

HENRY ADAMS
The Persistent Topology of Optimal Transport 
Based Metric Thickenings

GREGORY HENSELMAN-PETRUSEK
Beyond field coefficients: saecular barcodes and 
generators for persistent homology

LUNCH

2.00 - 3.00 SAUGATA BASU 
Complexity of computing homology of semi-algebraic sets and mappings

BREAK

3.30 - 4.30 ELIZABETH MUNCH 
The Many Faces of the Interleaving Distance

BREAK

4.45 - 5.45 GUNNAR CARLSSON 
TDA and motion planning

7.00 7.00 PM  CONFERENCE DINNER, BALLIOL COLLEGE
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9.30-10.30 HÉLÈNE BARCELO
Discrete cubical homotopy groups and real K(π, 1) spaces

BREAK

11.00-12.30
INGRID MEMBRILLO-SOLIS
Tracking the time evolution of soft matter systems 
via structural heterogeneity

MELVIN VAUPEL
Section complexes of simplicial height functions

OMER BOBROWSKI
Universal Distribtuion of Persistent Cycles

ANDREAS OTT
A persistent homology approach for the 
surveillance of emerging adaptive mutations in the 
evolution of the coronavirus

BIANCA DORNELAS
Sparse Higher Order Cech Filtrations

AMBROSE YIM
Local Inference of Morse Indices from Finite Point 
Samples

PARKER EDWARDS
Quantifying topological features in microscopy 
images

ANNA SCHENFISCH
Ordering Topological Descriptor Types

TADAS TEMČINAS
Multivariate Normal Approximations for Simplex 
Counts in Random Complexes

LUNCH

2.00 -3.00 FACUNDO MEMOLI
The Gromov-Hausdorff distance between spheres

BREAK

3.30 - 4.30 PETER BUBENIK
Persistent homology using filtered closure spaces

7.00PM  CONFERENCE DINNER RESERVATIONS - SIGN UP AT THE REGISTRATION DESK
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9.30-10.30 LEONID POLTEROVICH
Applying topological data analysis to pure mathematics

BREAK

11.00-12.30
ANNA-LAURA SATTELBERGER
The Shift-Dimension: an Algebraic Invariant of 
Multipersistence Modules

MARZIEH EIDI
Topological Learning from Dynamics on Data

PAUL DUNCAN
Homological percolation on a torus

SAMANTHA MOORE
The Generalized Persistence Diagram Encodes the 
Bigraded Betti Numbers

WOOJIN KIM
Extracting Persistent Clusters in Dynamic Data via 
Möbius inversion

ERIKA ROLDAN
Topology of random 2-dimensional cubical 
complexes

ADAM ONUS
Quantifying the Homology of Periodic Simplicial 
Complexes

KELLY MAGGS
Signal Compression and Reconstruction on Chain 
Complexes with Morsified Deformation Retracts

FRANCISCO MARTINEZ-FIGUEROA
The chromatic number of random Borsuk graphs

LUNCH

2.00 -3.00 NINA OTTER
What are weather regimes? A topologist’s answer

BREAK

3.30 - 4.30 VIN DE SILVA
Thoughts on Teaching Topology

4.30PM  A COLLECTIVE STROLL TO THE VICTORIA ARMS PUB ON THE BANKS OF THE RIVER CHERWELL FOR DRINKS & DINNER.  THE MILL LANE, 
OLD MARSTON, OX3 0QA
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1. HASSAN ABDALLAH STATISTICAL INFERENCE FOR PERSISTENT HOMOLOGY APPLIED TO SIMULATED FMRI TIME SERIES DATA WAYNE STATE UNIVERSITY

2. ÁNGEL JAVIER ALONSO REDUCING MULTI-PARAMETER FLAG FILTRATIONS VIA EDGE COLLAPSES TU GRAZ

3. HÅVARD BAKKE BJERKEVIK $\ELL^P$-CONTINUITY PROPERTIES OF MULTICOVER PERSISTENT HOMOLOGY TU GRAZ

4. MATÍAS BENDER COMPUTING MINIMAL PRESENTATIONS OF MULTI-PARAMETER PERSISTENT HOMOLOGY TECHNISCHE UNIVERSITÄT BERLIN

5. NICOLAS BERKOUK PROJECTED BARCODES : A NEW CLASS OF INVARIANTS AND DISTANCES FOR MULTIPARAMETER PERSISTENCE MODULES EPFL

6. ADAM BROWN LEARNING HOMOLOGICAL STRATIFICATIONS FROM FINITE SAMPLES ISTA

7. JOHNATHAN BUSH VIETORIS-RIPS COMPLEXES, PROJECTIVE CODES, AND ZEROS OF ODD MAPS UNIVERSITY OF FLORIDA

8. YUEQI CAO A CONDITION FOR THE UNIQUENESS OF FRÉCHET MEANS OF PERSISTENCE DIAGRAMS IMPERIAL COLLEGE LONDON

9. MAURICIO CHE METRIC GEOMETRY OF SPACES OF PERSISTENCE DIAGRAMS DURHAM UNIVERSITY

10. DOMINIC DES JARDINS CÔTÉ FROM FINITE VECTOR FIELD DATA TO FORMAN’S COMBINATORIAL DYNAMICAL SYSTEMS UNIVERSITY OF SHERBROOKE

11. LIU ENHAO CURSE OF DIMENSIONALITY IN PERSISTENCE DIAGRAMS KYOTO UNIVERSITY

12. XIMENA FERNANDEZ TOPOLOGY OF THE NEURAL ACTIVITY OF GRID CELLS DURHAM UNIVERSITY

13. CHRISTOPHER FILLMORE A CAUTIONARY TALE: BURNING THE MEDIAL AXIS IS UNSTABLE IST AUSTRIA

14. ANA LUCIA GARCIA PULIDO ON THE GEOMETRY OF THE SPACE OF PERSISTENCE BARCODES UNIVERSITY OF LIVERPOOL

15. ADÉLIE GARIN FROM TREES TO BARCODES AND BACK AGAIN: COMBINATORIAL AND PROBABILISTIC PERSPECTIVES EPFL / AALBORG UNIVERSITY

16.

17. ANDREA GUIDOLIN STABLE HOMOLOGICAL INVARIANTS FROM WASSERSTEIN METRICS KTH ROYAL INSTITUTE OF TECHNOLOGY

18. ABIGAIL HICKOK DENSITY-SCALED FILTERED COMPLEXES UCLA

19. RENEE HOEKZEMA MULTISCALE SPECTRAL METHODS FOR FEATURE SELECTION IN SINGLE CELL DATA UNIVERSITY OF OXFORD

20. EMILE JACQUARD THE SPACE OF BARCODE BASES OF A PERSISTENCE MODULE UNIVERSITY OF OXFORD

21. VITALIY KURLIN PERSISTENCE VS NEWER ISOMETRY INVARIANTS OF POINT SETS UNIVERSITY OF LIVERPOOL

22. DARRICK LEE A TOPOLOGICAL APPROACH TO MAPPING SPACE SIGNATURES EPFL

POSTERS



23. SUNHYUK LIM VIETORIS-RIPS PERSISTENT HOMOLOGY, INJECTIVE METRIC SPACES, AND THE FILLING RADIUS MAX PLANCK INSTITUTE 

24. FRANK H. LUTZ RANDOM SIMPLE-HOMOTOPY THEORY TU BERLIN

25. KILLIAN MEEHAN TOPOLOGICALLY LEARNED EMBEDDINGS AND APPLICATIONS TO CHROMOSOME STRUCTURAL ANALYSIS KYOTO UNIVERSITY

26. ADAM ONUS QUANTIFYING THE HOMOLOGY OF PERIODIC SIMPLICIAL COMPLEXES QUEEN MARY

27. 

28. SARAH PERCIVAL USING MAPPER TO REVEAL MORPHOLOGICAL RELATIONSHIPS IN PASSIFLORA LEAVES  MICHIGAN STATE UNIVERSITY

29. ABHISHEK RATHOD EFFICIENT APPROXIMATION OF THE MULTICOVER BIFILTRATION PURDUE UNIVERSITY

30. YOHAI REANI PERSISTENT CYCLE REGISTRATION AND TOPOLOGICAL BOOTSTRAP TECHNION 

31. RAPHAEL REINAUER PERSFORMER: A TRANSFORMER ARCHITECTURE FOR TOPOLOGICAL MACHINE LEARNING EPFL

32. SARA SCARAMUCCIA BARCODE MAPPINGS INDUCED BY PERSISTENCE MODULE MORPHISMS UNIVERSITÀ DEGLI STUDI DI ROMA

33. NICHOLAS SCOVILLE THE HOMOTOPY TYPE OF THE MORSE COMPLEX FOR SOME COLLECTIONS OF TREES URSINUS COLLEGE

34. CHUNYIN SIU DETECTION OF SMALL TOPOLOGICAL FEATURES BY THE SCALE-INVARIANT ROBUST DENSITY-AWARE DISTANCE (RDAD) FILTRATION  CORNELL UNIVERSITY

35. ANNA SONG SIGNED DISTANCE PERSISTENT HOMOLOGY OF TUBULAR AND MEMBRANOUS SHAPES IMPERIAL COLLEGE LONDON

36. MANUEL SORIANO-TRIGUEROS INDUCING A PARTIAL MATCHING FROM A MAP BETWEEN PERSISTENCE MODULES UNIVESIDAD DE SEVILLA 

37. DANIEL SPITZ THE GEOMETRY OF NONEQUILIBRIUM SELF-SIMILAR BEHAVIOR IN GAUGE THEORIES UNIVERSITY OF HEIDELBERG

38. RAPHAËL TINARRAGE SIMPLICIAL APPROXIMATION TO CW COMPLEXES IN PRACTICE FGV EMAP

39. FRANCESCA TOMBARI REALISATIONS OF POSETS AND TAMENESS KTH

40. LUKAS WAAS PERSISTENT STRATIFIED HOMOTOPY TYPES HEIDELBERG UNIVERSITY

41. QIQUAN WANG FUNCTIONAL SUPPORT VECTOR MACHINE ON PERSISTENT HOMOLOGY RANK FUNCTIONS IMPERIAL COLLEGE LONDON

42. 
IST AUSTRIA

43. CHENGUANG XU COMPUTING INTERVAL DECOMPOSITIONS/APPROXIMATIONS FOR COMMUTATIVE LADDER PERSISTENT HOMOLOGY KYOTO UNIVERSITY

44. JUN YOSHIDA SIMPLICIAL COMPLEXES IN TOPOSES AND APPLICATION TO TIME-DEPENDENT PERSISTENT HOMOLOGY RIKEN AIP

45. 

46. BARBARA GIUNTI AMPLITUDES IN MULTIPARAMETER PERSISTENCE TU GRAZ

47. ARAS ASAAD PERSISTENT HOMOLOGY FOR BREAST TUMOR CLASSIFICATION USING MAMMOGRAM SCANS UNIVERSITY OF BUCKINGHAM

POSTERS





Depth in arrangements: Dehn–Sommerville–Euler relations

with applications.

Herbert Edelsbrunner

Abstract

The depth of a cell in an arrangement of n (non-vertical) great-spheres in Sd is the number
of great-spheres that pass above the cell. We prove Euler-type relations, which imply exten-
sions of the classic Dehn–Sommerville relations for convex polytopes to sublevel sets of the
depth function, and we use the relations to extend the expressions for the number of faces of
neighborly polytopes to the number of cells of levels in neighborly arrangements.

This is work with Ranita Biswas, Sebastiano Cultrera, and Morteza Saghafian.

Persistent homology for functionals.

Ulrich Bauer

Abstract

I will illustrate the central role and the historical development of persistent homology
beyond applied topology, connecting recent developments in persistence theory with classical
results in critical point theory and the calculus of variations. Presenting recent joint work
with M. Schmahl and A. Medina-Mardones, I will explain how the modern view on persistence
provides a new and clarifying perspective on Morse’s theory of functional topology, which has
been instrumental in the first proof of the existence of unstable minimal surfaces by Morse
and Tompkins.



How to draw a knot.

Eric Sedgwick

Abstract

Knots are traditionally presented via planar diagrams. Haken’s solution to the unknotting
problem shows the computational advantage of another representation, a triangulation of the
complement of the knot. We explore the relationship between these two representations and
how the number of crossings in a diagram relates to the number of tetrahedra in a triangulation.
While it is straightforward to convert a knot diagram to a triangulation, we demonstrate a
solution to the reverse problem: Given a triangulation of a knot complement, how do you
draw the knot? The solution relies on normal surface theory, especially on ideas from the
Rubinstein-Thompson algorithm for 3-sphere recognition.

This is joint work with Robert Haraway, Neil Hoffman and Saul Schleimer.

Theory and applications of the Persistent Homology

Transform and variants - an overview

Katharine Turner

Abstract

Persistent homology and other topological summaries like Euler curves are a classic way to
characterise geometric shape. One common filtration is a height function which will capture
information about geometry of a shape with respect to a specific direction. The Persistent
Homology Transform (PHT) basically expands on this idea by considering the height functions
in all directions. This has nice theoretical properties, in particular that it completely describes
a compact nice subsets of Euclidean space, and also can provide new metrics for quantitatively
measuring the difference between geometric objects. We can also make different variants of
the PHT by using different topological summaries, most notably the Euler Characteristic
Transform which constructs the Euler Curves in each direction. This talk will be a bit of a
survey of both theory developments and also interesting applications.





Probabilistic stability theorems for multiparameter persistent

homology

Andrew Blumberg

Abstract

The depth of a cell in an arrangement of n (non-vertical) great-spheres in Sd is the number
of great-spheres that pass above the cell. We prove Euler-type relations, which imply exten-
sions of the classic Dehn–Sommerville relations for convex polytopes to sublevel sets of the
depth function, and we use the relations to extend the expressions for the number of faces of
neighborly polytopes to the number of cells of levels in neighborly arrangements.

This is work with Ranita Biswas, Sebastiano Cultrera, and Morteza Saghafian.

The magnitude vector of images

Michael F. Adamer1, 2, Leslie O’Bray1, 2, Edward De
Brouwer3, Bastian Rieck1, 2, 4, †, Karsten Borgwardt1, 2, †

1Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel,
Switzerland

2SIB Swiss Institute of Bioinformatics, Switzerland
3ESAT-STADIUS, KU LEUVEN, 3001 Leuven, Belgium

4B.R. is now with the Institute of AI for Health, Helmholtz Zentrum München,
Neuherberg, Germany

†These authors jointly supervised this work.

Abstract

The magnitude of a finite metric space is a recently-introduced invari-
ant quantity [Leinster, 2010], which encodes many invariants from integral
geometry and geometric measure theory. As shown by Leinster [2010], the
magnitude of a metric space can intuitively be understood as an attempt to
measure its effective size.

Despite extensive theoretical work on magnitude, and the close con-
nections between magnitude and persistent homology [Otter, 2018], many
of its properties are still unknown, and numerous open questions remain
concerning more practical implications, in particular in topological data
analysis and machine learning. Recent work [Bunch et al., 2021] has made
a step towards linking magnitude vectors with machine learning applica-
tions, however, this branch of research is still in its infancy.

We instead investigate the properties of magnitude vectors on individ-
ual images, with each image forming its own finite metric space. We there-
fore consider the magnitude vectors of each individual data point by en-
dowing each image with a metric space structure and explore its proper-
ties. In this work, we derive a novel algorithm that significantly speeds
up the computation of magnitude on images and empirically show its cor-
rectness. This computational relaxation paves the way for magnitude to be
used more broadly in machine learning research. We further incorporate a
magnitude computation into a differentiable neural network layer that can
be easily integrated into existing deep learning architectures.

The applicability of magnitude in various domains is investigated, with
a particular emphasis on edge detection, both to directly perform edge de-
tection in images, as well as serving as a pre-processing step that high-
lights edges in an image before being fed to an edge-detection algorithm.

1



Finally, we investigate the properties of the magnitude function of images
by stacking different magnitude vectors and its possibilities of improving
classification performance of existing computer vision methods.

Author Emails
• Michael F. Adamer: michael.adamer@bsse.ethz.ch

• Leslie O’Bray: leslie.obray@bsse.ethz.ch

• Edward De Brouwer: edward.debrouwer@gmail.com

• Bastian Rieck: bastian.rieck@helmholtz-muenchen.de

• Karsten Borgwardt: karsten.borgwardt@bsse.ethz.ch

References
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Nina Otter. Magnitude meets persistence. homology theories for filtered simplicial sets.
arXiv preprint arXiv:1807.01540, 2018.
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ing vectors for machine learning: numerical harmonic analysis applied to boundary
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Categorification of Extended Persistence

Diagrams

Ulrich Bauer

Department of Mathematics and Munich Data Science Institute,
Technical University of Munich (TUM), Germany,

ulrich.bauer@tum.de

Benedikt Fluhr

Department of Mathematics, Technical University of Munich
(TUM), Germany, fluhr@ma.tum.de

January 31, 2022

The extended persistence diagram introduced by Cohen-Steiner, Edelsbrun-
ner, and Harer [CEH09] is an invariant of real-valued continuous functions,
which are F-tame in the sense that all open interlevel sets have degree-wise
finite-dimensional cohomology with coefficients in a fixed field F. We categorify
this invariant in the sense that we provide a functor h from the category of
F-tame functions to an abelian Frobenius category A with the following prop-
erty. For an F-tame function f : X → R the extended persistence diagram
Dgm(f) uniquely determines - and is determined by - the corresponding ele-
ment [h(f)] ∈ K0(A) in the Grothendieck group K0(A) of the abelian category
A. This is in close analogy to the following categorification of the Euler charac-
teristic: Given a topological space X the Euler characteristic χ(X) ∈ Z uniquely
determines [Δ•(X)] ∈ K0(Ab), which is the element in the Grothendieck group
K0(Ab) of the category of abelian groups Ab corresponding to the singular chain
complex Δ•(X) of X. We hope this provides a new perspective to persistence
diagrams in settings where structural results are unavailable.

Our construction of this categorification builds on our results from [BBF21].
More specifically, h(f) ∈ Ob(A) is an invariant we introduced there as the rel-
ative interlevel set cohomology (RISC) of f : X → R. As an intermediate step
we harness our structure result from [BBF21] to show that A is the Abelianiza-
tion of the category of derived sheaves on R, which are tame in the sense that
sheaf cohomology of any open interval is finite-dimensional in each degree. This
yields a close link between derived level set persistence [Cur14; KS18] and the
categorification of extended persistence diagrams.

1
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Average complexity of persistence algorithms for clique 
filtrations

Barbara Giunti, Graz University of Technology, Austria, email: bgiunti@tugraz.at 
Guillaume Houry École Polytechnique Paris, guillaume.houry@live.fr
Michael Kerber, Graz University of Technology, kerber@tugraz.at

Since persistent homology has proven to be a powerful tool in data analysis, the 
algorithmsfor its computation are essential. The majority of these algorithms are (efficient)
variants of the left-to-right matrix column reduction, and they have worst-case complexity
cubical in the number of input simplices. Even if carefully constructed filtrations can 
achieve the worst-case complexity, empirical evidence suggests a much faster average 
behaviour. In this talk, we present the first theoretical study of the algorithmic complexity 
of computing the persistent homology of a randomly chosen filtration. Specifically, we 
prove upper bounds for the average fill-up (number of non-zero entries) of the boundary 
matrix on Erdös-Renyi filtrations and Vietoris-Rips filtrations after matrix reduction. Our 
bounds show that, in both cases, the reduced matrix is expected to be significantly sparser 
than what the general worst-case predicts. Our method is based on previous results on the 
expected first Betti numbers of corresponding complexes. We establish a link between 
these results and the boundary matrix’s fill-up. This link holds for all clique filtrations. 
Thus, our bounds can be expanded to other degrees and other filtrations once suitable 
results on the corresponding expected Betti numbers are provided. Moreover, we show 
using some benchmarks that, for Vietoris-Rips complexes, our bound is asymptotically 
tight up to logarithmic factors. Finally, we construct an Erdös-Renyi filtration achieving 
the worst-case fill-up and complexity.



Hybrid transforms of constructible functions with
applications to multiparameter persistent magnitude

Abstract submission for ATMCS 10

Vadim Lebovici∗

January 18, 2022

Abstract. Euler calculus techniques — integration of constructible functions with
respect to the Euler characteristic — have led to important advances in topological
data analysis. For instance, the (constructible) Radon transform has provided a positive
answer to the following question: are two subsets of Rn with same persistent homology
in all degrees and for all height filtrations equal? More generally, the constructible
functions naturally associated to multi-parameter persistent modules stand as simple,
informative and well-behaved, albeit incomplete, invariants of these objects.

Following my recent work [Leb21], I will introduce integral transforms combining
Lebesgue integration and Euler calculus for constructible functions and present two
main outcomes. The first is a generalization of Govc and Hepworth’s persistent mag-
nitude to multi-parameter persistent modules. The second is a mean formula for such
transforms in the context of sublevel-sets persistent homology for random filtrations.
More generally, I will expose how Lebesgue integration gives access to well-studied
kernels and to regularity results, while Euler calculus conveys topological information
and allows for compatibility with operations on constructible functions (convolution,
pushforward, etc). Focusing on two examples, the Euler-Fourier and Euler-Laplace
transforms, I will show various examples illustrating that they are strictly more dis-
criminating than their classical analogues. See Figure 1 for an illustration.1
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∗Université Paris-Saclay, CNRS, Inria, Laboratoire de Mathématiques d’Orsay, 91405, Orsay,
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1Not knowing if figures are allowed, I add one without it being necessary for the understanding of
the abstract. Please forget this last sentence if figures are not allowed.

(a) 1S (b) Euler-Fourier transform of 1S

(c) 1S − 1C (d) Euler-Fourier transform of 1S − 1C

Figure 1: Euler-Fourier transform of the constructible functions 1S and 1S − 1C . The
square S is represented by the light blue solid square and the closed curve C is repre-
sented by the dark blue dotted curve.



Distributed Persistence: Inverse Theorems and Dimensionality Reduction
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What is the “right” topological invariant of a large point cloud X? Prior research has focused

on estimating the full persistence diagram of X, a quantity that is very expensive to compute,

unstable to outliers, and far from injective. We therefore propose that, in many cases, the collection

of persistence diagrams of many small subsets of X is a better invariant. This invariant, which we

call distributed persistence, is embarrassingly parallelizable, more stable to outliers, and has a rich

inverse theory. The map from the space of metric spaces (with the quasi-isometry metric) to the

space of distributed persistence invariants (with the Hausdorff-Bottleneck distance) is globally bi-

Lipschitz. This is a much stronger property than simply being injective, as it implies that the

inverse image of a small neighborhood is a small neighborhood, and is to our knowledge the only

result of its kind in the TDA literature. By combining distributed persistence with a local, metric

term, we introduce a novel approach to dimensionality reduction called DIPOLE. DIPOLE almost

surely converges and performs well against popular methods like UMAP, t-SNE, and Isomap on a

number of datasets, both visually and in terms of precise quantitative metrics.
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Abstract:
A central challenge in topological data analysis is the interpretation of barcodes. The classical
algebraic-topological approach to interpreting homology classes is to build maps to spaces
whose homology carries semantics we understand and then to appeal to functoriality. However,
we often lack such maps in real data; instead, we must rely on a cross-dissimilarity measure
between our observations of a system and a reference. We will present a pair of computational
homological algebra approaches for relating persistent homology classes and barcodes:
persistent extension, which enumerates potential relations between cycles from two complexes
built on the same vertex set, and the method of analogous bars, which utilizes persistent
extension and the witness complex built from a cross-dissimilarity measure to provide relations
across systems. Time permitting, we will demonstrate the use of these methods in studying
neural population coding and structure propagation on synthetic and real neuroscience
datasets.
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Abstract

A metric thickening of a given metric space X is any metric space admitting an
isometric embedding of X. Thickenings have found use in applications of topology to
data analysis, where one may approximate the shape of a dataset via the persistent
homology of an increasing sequence of spaces. We introduce two new families of metric
thickenings, the p-Vietoris–Rips and p-Čech metric thickenings for all 1 ≤ p ≤ ∞,
which include all probability measures on X whose p-diameter or p-radius is bounded
from above, equipped with an optimal transport metric. The p-diameter (resp. p-
radius) of a measure is a certain �p relaxation of the usual notion of diameter (resp.
radius) of a subset of a metric space. These families recover the previously studied
Vietoris–Rips and Čech metric thickenings when p = ∞. As our main contribution, we
prove a stability theorem for the persistent homology of p-Vietoris–Rips and p-Čech
metric thickenings, which is novel even in the case p = ∞. In the specific case p = 2,
we prove a Hausmann-type theorem for thickenings of manifolds, and we derive the
complete list of homotopy types of the 2-Vietoris–Rips thickenings of the n-sphere as
the scale increases.
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Beyond field coefficients: saecular barcodes and generators for

persistent homology
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Abstract

A persistence module is a functor f : I → E, where I is the poset category of a totally ordered set. We introduce

saecular decomposition: a categorically natural method to decompose f into simple parts, called interval modules.

Saecular decomposition exists under generic conditions, e.g., when I is well ordered and E is a category of modules

or groups. This represents a substantial generalization of existing factorizations of 1-parameter persistence modules,

leading to, among other things, persistence diagrams not only in homology, but in homotopy.

Applications of saecular decomposition include inverse and extension problems involving filtered topological

spaces, the 1-parameter generalized persistence diagram, and the Leray-Serre spectral sequence. Several examples –

including cycle representatives for generalized barcodes – hold special significance for scientific applications.

The key tools in this approach are modular and distributive order lattices, combined with Puppe exact categories.

An accompanying paper may be found at https://arxiv.org/abs/2112.04927.
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Complexity of computing homology of semi-algebraic sets

and mappings

Saugata Basu

Abstract

The algorithmic complexity of the problem of computing the homology groups of semi-
algebraic sets, and the related problem of computing semi-algebraic triangulations, has been
studied for a long time. In this talk I will report on some new progress. The improvement
in complexity (for any fixed dimensional homology) measured in terms of the number and
degrees of the polynomials appearing in the input formula describing the given semi-algebraic
set, as well as the number of variables – goes from doubly exponential, to singly exponential,
to even polynomial (in the presence of extra properties like symmetry). If time permits I will
describe some applications to computing persistent barcodes of semi-algebraic filtrations, and
computing semi-algebraic basis of homology groups of semi-algebraic sets.

Parts of the work are joint (separately) with Negin Karisani, Sarah Percival and Cordian
Riener.

The Many Faces of the Interleaving Distance

Elizabeth Munch

Abstract

One might argue that the reason we are all here for this conference and the reason that
TDA took off at all is because the topological signatures we study (persistence in all its forms,
Reeb graphs, mapper graphs, merge trees, etc) are stable representations of data even in
the presence of noise. That is to say, given a ground truth topological space and the noisy,
measurable version of that data, the topological representations resulting from the two are at
least as similar as the truth and the approximation. For that sentence to make sense at all,
we require a metric on the topological signatures. The interleaving distance arose as a natural
generalization of the persistence diagram bottleneck distance to its more algebraic counterpart,
the persistence module. From there, categorical representations of the same settings have led
to a vast field of options for input representation types where the interleaving distance can be
applied. And beyond this, many standard L style distances can be realized as an interleaving
distance in a properly chosen category. In this talk, we will give a sense of the wide array
of available options, with a particular focus on the interleaving distance for graph- based
representations of data; and (time-permitting) discuss a new framework for measuring the
quality of approximate interleavings.

This work builds on the work of many (Chazal, Cohen-Steiner, Glisse, Guibas, Oudot,
Lesnick, Bubenik, Scott, Bjerkevik, Bauer, Robinson, et al) and my collaborations with even
more (Percival, B Wang, Chambers, Ophelders, Curry, Botnan, Stefanou, Bollen, Levine, de
Silva, Patel, et al).



TDA and motion planning

Gunnar Carlsson

Abstract

Many problems in motion planning can be formulated as (1) identifying the topology of
complements and (2) using that information to find paths (perhaps optimal in some sense)
connecting two points. This involves understanding unstable homotopy types of complements.
One approach to the problem is via the use of the added structure on cohomology around cup
products. We will discuss an approach to this which can be implemented computationally.

This represents joint work with Brad Nelson, John Carlsson, Ben Filippenko, and Wyatt
Mackey.



Discrete cubical homotopy groups and real K(π, 1) spaces.

Hélène Barcelo

Abstract

In this talk we wish to demonstrate how a theory, developed entirely for the purpose of
solving problems stemming from search-and-rescue missions, gave rise to one that in turn has
applications to fundamental mathematics.

Discrete cubical homotopy theory is a discrete analogue of (singular) simplicial homotopy
theory, associating a bigraded sequence of groups to a simplicial complex, capturing some of
its combinatorial structure. The motivation for this construction came initially from the desire
to find invariants for dynamic processes that were encoded using (combinatorial) simplicial
complexes. The invariants should be topological in nature, but should also be sensitive to
the combinatorics encoded in the complex, in particular to the level of connectivity among
simplices.

Over the last few years similar notions have arisen from several areas of mathematics
(e.g., geometric group theory, coarse geometry, computer science) signaling both the pressing
need for such a theory as well as its universal nature. As an illustration, we will provide
a real analogue of Brieskorn’s result on complex K(π, 1) spaces: the fundamental group of
the complement, over C of the type W Coxeter arrangement is isomorphic to the pure Artin
group of type W. In the real case, the fundamental group of the complement, over R, of the
3−parabolic subspaces arrangement of type W is isomorphic to the discrete cubical homotopy
group of the associated simplicial complex.
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Soft matter systems have two common features: high propensity to de-
formation under small mechanical or thermal stress, and high complexity of
their components (liquid crystals, polymers, biological tissues, etc). These
characteristics make the mathematical modelling of soft materials challeng-
ing and, in most cases, powerful analytic methods are required for an accu-
rate and quantitative characterisation of their dynamics.

In this talk we will discuss a persistent homology framework to track
the dynamical behaviour of a wide range of semi-ordered soft matter sys-
tems. In particular, we will present an application to the study of phase
transitions in nematic liquid crystal nanocomposites. We will show that
structural heterogeneity, a topological characteristic for semi-ordered soft
materials, can capture their degree of organisation at a mesoscopic level and
track their time-evolution, ultimately detecting the order-disorder transition
at the microscopic scale. The results presented will show that structural het-
erogeneity can reveal the effect of the system’s geometry on the dynamics of
the nematic-isotropic and isotropic-nematic phase transitions, and uncover
physical differences between these thermodynamic processes.

∗i.membrillo-solis@soton.ac.uk
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Section complexes of simplicial height functions

Melvin Vaupel, Erik Hermansen and Paul Trygsland

Consider a real valued continuous function f : X → R. In applications this function

could encode a quantity such as time or cost. We are interested in sections of f - that is

maps σ : [a,b]→ X such that f ◦σ = id. Homotopical information about sections may be

combined across height levels to recover the homotopy type of the base space X . This is

possible for smooth Morse functions [CJS92], Reeb functions [Try21], but also discrete

Morse functions on simplicial complexes [NTT18]. In all of these cases, the homology

of X can be computed with a spectral sequence associated to an appropriate topological

category of sections. In [VHT22a], we explain how to extract Reeb complexes from the

first page of such a spectral sequence. These can be understood as generalisations of the

Reeb graph to higher homology and encode how generators of homology flow between

fibers of f along sections. We prove: if f is a Morse type function, the Reeb complexes

reduce to zigzag modules, which relate to the levelset zigzag of f [CdSM09] via the

diamond principle [CdS10].

In our paper [VHT22b], that we would like to present at the conference, a completely
combinatorial and in particular algorithmically implementable theory of sections for

piecewise linear functions is developed. This is accomplished by modelling such func-

tions as maps of simplicial sets h : X → R, into an appropriate simplicial model of the

real line. In analogy to the continuous case, homotopical information about sections

of h can be organised across height levels in a bisimplicial set, that we call the section
complex. We prove that the spectral sequence associated to the section complex always

computes the homology of the base space X . Furthermore, we can compute the continu-

ous Reeb complexes from above with our simplicial theory of sections. An appropriate

proposition, that bridges between the two theories up to homology, is proven.

1
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Universal Distribtuion of Persistent Cycles 
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One of the fundamental challenges in using persistent homology is how to determine 
which features are statistically significant, and which are merely noise. A way to address 
this problem is by characterizing the distribution of the noisy cycles. 
In this talk we will consider the empirical distribution of the multiplicative persistence 
values (i.e. death/birth). We will argue that in random geometric complexes, the 
persistence distribution of the noise is universal, in the sense that it depends on neither 
the underlying space nor the original distribution of the point cloud. This statement is 
currently an open conjecture, but we will present strong experimental evidence for it (in 
both simulated and real data), as well as heuristic explanations for the source of this 
phenomenon. We will also demonstrate how this universal distribution can be used to 
compute p-values for persistent cycles, with very little knowledge about the underlying 
model. 
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ract text: 
COVID-19 pandemic has initiated an unprecedented worldwide effort to characterize its evolution through the 
ping of mutations in the genome of the coronavirus SARS-CoV-2. The appearance of new variants of concern, lik

mple the Omicron variant, demonstrates that the early identification of mutations that could confer adaptive 
ntages to the virus, such as higher infectivity or immune evasion, is of paramount importance. However, the lar
ber of currently available genomes, several millions at this moment, precludes the efficient use of standard 
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une escape. As we demonstrate, our method can detect adaptive mutations at an early stage, well before they 
me recognizable by their prevalence in the population. We report on current emerging potentially adaptive 

ations, and pinpoint mutations in variants of concern that are likely due to convergent evolution. Our approach c
ove the surveillance of mutations of concern, guide experimental studies, and aid vaccine development. 
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Abstract8

The k fold filtration at parameter r, whose nerve is the kth order Čech filtration at r, is formed9

by the union of intersections of k balls with radius r. These balls are usually centered at points of10

a given point set P . We provide an approximation algorithm for the kth fold filtration, which in11

particular leads to a (1+ ε)-approximation of the higher order Čech complex of P . Our techniques12

are inspired by the approaches for the case k = 1 of [1, 2, 3, 4]. However, those approaches rely on13

the removal of vertices according to properties over the vertices themselves, which leads to a size14

with linear dependency on the number of vertices. For the higher order case, a direct adaptation15

would result in size bounds of order nk. To overcome this issue, we work with the concept of k-16

distances over P. Our approach allows us to define adequate net-like structures over P with cover17

and packing properties that hold for sets of k points.18

At radius r, the k fold filtration can be understood as a section of a growing cone-like shape.19

Each of these cone shapes corresponds to the intersection of a fixed set of k balls. We sparsify the20

construction by iteratively inactivating points of P. During the inactivation of a point p ∈ P, all21

the cone shapes involving p are first frozen at their state at scale r and later cut off at scale r′ > r.22

The order of inactivation and the scales r and r′ are given by our net-like structure. The resulting23

approximate filtration has size linear in n rather than nk. The maximal number of p-simplices is24

O
(
nkk(p+1)

(
8(1 + ε)2

ε

)2δk(p+1)
)
,

where δ is the doubling dimension of the underlying space. We also provide an algorithm for25

computing the sparsified filtration.26
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Local Inference of Morse Indices from Finite Point Samples

KA MAN YIM1 AND VIDIT NANDA2

Mathematical Institute, University of Oxford

Abstract. The Morse index associated to a critical point of a smooth function is a local quantity
that is equal to the number of negative eigenvalues of the Hessian evaluated at that point. As
second derivatives might be difficult to compute or unavailable in real world contexts, one can use
the fundamental results of Morse theory to bypass the need for second derivatives. Unfortunately,
this involves computing the relative homology of pairs of sub-level sets, which is no longer a local
quantity. In this talk, we propose a new algorithm which combines the best of both worlds by
reducing the computation of the Morse index to a homology inference problem. The key ingredient
is the theory of Gromoll-Meyer pairs, which facilitates this transition from global sublevel sets to
local submanifolds with corners. Finally, we describe an upper bound on the density of sample
points needed in order to recover the Morse index.

E-mail address: 1yim@maths.ox.ac.uk, 2nanda@maths.ox.ac.uk.
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Title: Quantifying topological features in microscopy images
Abstract: Microscopy images from biological experiments often depict rich topological and
geometric structure. Convolutional neural networks are natural candidates for extracting
these features, but their remarkable success has mostly centered on automating tasks that
human experts can already perform. Interpretable analyses that aid experts in generating
new hypotheses from small experiments remain challenging.

In this talk, I will present new topological data analysis (TDA) image features and a
machine-learning-based image analysis pipeline we have introduced, TDAExplore, which
performs “weakly supervised” image segmentation of microscopy image data. The pipeline
takes grayscale images labeled by experimental group (e.g. control and modified) as input.
As output it produces a pixel mask for each image that highlights regions which exhibit
topological structures characteristic of each group.

Our TDA image features take advantage of several TDA methods to extract robust
information from small image sub-regions: persistent local homology from point clouds, per-
sistence landscapes, and alpha complexes. This combination was engineered for inexpensive
computations and the pipeline is highly parallelizable. For example, a typical 8 CPU lab
computer running TDAExplore can analyze 70 high resolution images in less than 15 min-
utes using 5GB of memory.

I will also discuss results from applying our methodology to fluorescence microscopy
images of cells’ actin cytoskeletons. We investigated the effects of experimentally-induced
regulatory changes on actin morphology. The results correctly recapitulate the effects of
well-studied regulatory changes and suggest new hypotheses for others. We also obtained
whole image classification results that compare favorably with previous studies of benchmark
datasets. These datasets feature a variety of microscopy modes and subjects.

Our pipeline demonstrates how modern TDA and machine learning methods can provide
accessible and interpretable tools for practitioners in a “small data” setting. TDAExplore is
available as R packages with both programmatic and command line interfaces.

Pixel masks of topological scores learned by TDAExplore from actin cytoskeleton data.
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Ordering Topological Descriptor Types
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Given a simplicial complex embedded in $R^d$, there exist finite sets of topological descriptors
generated by lower-star filtrations in various directions that, together, faithfully represent the
complex. This fact is the foundation of many recent developments in shape representation and
comparison. By computing e.g., Euler characteristic curves (ECCs) that arise from filtrations
over shapes and some set of standardized directions, the shapes can be compared through the
comparison of the ECCs, and even through putting these ECCs in a machine learning pipeline.

Given a simplicial complex and a set of descriptors that faithfully represents it, there is always a
minimum cardinality for such a set. Generally, this exact minimum is difficult to know. However,
these minimums can be discussed and bounded theoretically, which serves as a measure for how
powerful a descriptor type is.

With this motivation, we build a framework through which descriptor types---Euler characteristic
curves, persistence diagrams, etc.---can be ordered by their ability to represent shapes.
Specifically, we use the size of faithful sets of parameterized descriptors to define this ordering.
We then partially order six common descriptor types and discuss the benefits of viewing this
work through the lens of constructible cosheaves over a simplicially stratified "sphere of
directions." We also discuss a simplicial complex construction for which the minimum set of
augmented descriptors needed to form a faithful set is surprisingly large.



Multivariate Normal Approximations for Simplex Counts

in Random Complexes
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Acyclic partial matchings on simplicial complexes play an important role in topological data
analysis by facilitating efficient computation of (persistent) homology groups [5, 8, 6, 7]. In this
work we describe probabilistic properties of critical simplex counts for such (lexicographical)
matchings on clique complexes of Bernoulli random graphs. This random variable, which arises
very naturally in stochastic topology [3, 2], has been poorly studied from a distributional
approximation perspective. To the best of our knowledge, only the expected value has been
calculated [1, Section 8].

In order to understand the distribution of critical simplex counts, we provide an abstract
multivariate central limit theorem using Stein’s method [4]. As a consequence of this general
result, we are able to extract central limit theorems not only for critical simplex counts, but
also for simplex counts in the link of a fixed simplex in a random clique complex. The results
quantify the quality of an appropriate normal approximation when the number of vertices in
the random complex is finite. Also, the hypotheses of the theorems allow different parameters
of the model to depend on each other, giving results in a wide range of parameter combinations.

This talk is mainly based on the recent work [9].

∗Department of Statistics, University of Oxford, tadas.temcinas@keble.ox.ac.uk
†Mathematical Institute, University of Oxford, vidit.nanda@maths.ox.ac.uk
‡Department of Statistics, University of Oxford, reinert@stats.ox.ac.uk

Figure 1: Lexicographical matching given by the red arrows. Critical simplices are highlighted
in blue.
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The Gromov-Hausdorff distance between spheres.

Facundo Mémoli

Abstract

The Gromov-Hausdorff distance is a fundamental tool in Riemanian geometry, due the
topology it generates, and also in applied geometry and topological data analysis, as a metric
for expressing the stability of the persistent homology of geometric data (e.g. via the Vietoris-
Rips filtration). Whereas it is often easy to estimate the value of the distance between two
given metric spaces, its precise value is rarely easy to determine. Some of the best estimates
follow from considerations actually related to both the stability of persistent homology and to
Gromov’s filling radius. However, these turn out to be non-sharp.

In this talk I will describe these estimates and also results which permit calculating the
precise value of the Gromov-Hausdorff between certain pairs of spheres (endowed with their
geodesic distance). These results involve lower bounds, which arise from a certain version
of the Borsuk-Ulam theorem that is applicable to discontinuous maps, and from matching
upper bounds which are induced from specialized constructions of “correspondences” between
spheres.

Persistent homology using filtered closure spaces

Peter Bubenik

Abstract

We develop persistent homology in the setting of filtered (Cech) closure spaces. Examples
of filtered closure spaces include filtered topological spaces, metric spaces, weighted graphs,
and weighted directed graphs. We use various products and intervals for closure spaces to
obtain six homotopy theories, six cubical singular homology theories and three simplicial
singular homology theories. Applied to filtered closure spaces, these homology theories produce
persistence modules. We extend the definition of Gromov-Hausdorff distance to filtered closure
spaces and use it to prove that these persistence modules and their persistence diagrams are
stable. We also extend the definitions Vietoris-Rips and Cech complexes to give functors on
closure spaces and prove that their persistent homology is stable. The Vietoris-Rips functor
has a left adjoint which we call the star functor; in contrast the Cech functor does not have a
left or right adjoint.

This is joint work with Nikola Milicevic.





Applying topological data analysis to pure mathematics

Leonard Polterovich

Abstract

Topological persistence provides new tools for studying oscillations of functions, e.g., eigen-
functions of the Laplacian, and functionals, e.g., the action functional in classical mechanics.
This leads to a number of applications to function theory, spectral geometry, symplectic topol-
ogy, and dynamical systems.

Based on joint works with Lev Buhovsky, Michael Entov, Jordan Payette, Iosif Polterovich,
Egor Shelukhin, and Vukasin Stojisavljevic.

THE SHIFT-DIMENSION: AN ALGEBRAIC INVARIANT OF

MULTIPERSISTENCE MODULES

WOJCIECH CHACHÓLSKI, RENÉ CORBET, AND ANNA-LAURA SATTELBERGER

Persistent homology of a one-parameter filtration is algebraically well understood; by a basic
structure theorem from algebra, its homology module is uniquely determined by its barcode [6]
from which one reads the birth and death times of topological features. The study of multi-
filtered simplicial complexes and their homology [2] allows to extract finer information from
data, but is algebraically intricate. In contrast to the case of a single parameter, there is no
discrete complete invariant: as pointed out in [2], the respective moduli space is not zero-
dimensional. Moreover, one encounters a lack of stable, algorithmic invariants.

In [3], we investigate an invariant of multipersistence modules that is based on the hierarchi-
cal stabilization of discrete invariants of [5]. This construction turns a discrete invariant into
a measurable real-valued function in a stable way. The hierarchical stabilization of the zeroth
total multigraded Betti number β0 is commonly referred to as stable rank. In our article, we
focus on the stabilization of β0 in the direction of a vector. We call the resulting invariant the
shift-dimension of M. We investigate its algebraic properties such as (non)-additivity and the
behavior for short exact sequences. The shift-dimension naturally translates to an invariant of
multigraded modules over the multivariate polynomial ring.

The computation of the shift-dimension is algorithmic, but in general NP-hard [5]. We
give a linear-time algorithm for interval modules in the bivariate case. Direct sums of such
modules arise as homology of certain multifiltrations [4] or as approximation of arbitrary finitely
presented multipersistence modules in the bivariate case [1].

In summary, we provide a new invariant of persistence modules in the multivariate case
which might serve as a feature map for machine learning tasks. It would be my great honor and
pleasure to present our work in the section “Multivariate Persistent Homology” at ATMCS10.
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Abstract

Topological Learning from Dynamics on Data
Authors:
Dr. Marzieh Eidi, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany,
meidi@mis.mpg.de
Prof. Dr. Jürgen Jost, Max Planck Institute for Mathematics in the sciences, Germany and Santa
Fe Institute, USA, jjost@mis.mpg.de

Topology concerns with those parameters which are preserved under continuous deformation of a
space. The number of k-dimensional holes is one main such parameter and computing them has
been a challenging question for many years; we are looking for ways to reduce the size of data while
not losing its main global (Topological) features: in this regard, the fundamental theories presented
by Morse (1925) and Floer (1988) for gradient vector fields and their corresponding discrete versions
(originally introduced by Forman, 1998) have become very main tools for qualitative shape analysis
for both smooth and discrete settings in the past decade. However a very main challenge in both
theory and applications is to generalise these powerful theories and methods to non-gradient vector
fields where the (isolated) invariant sets are more complicated than critical points (simplexes). In
this seminar, I will talk about how to recover homology groups of both smooth and combinatorial
settings, in a unifying perspective, based on dynamical systems operating on the object where we
can have periodic orbits as well as critical points. This is the first step to generalise our methods
from gradient vector fields to general vector fields ( which also arise in variety of applications) for
both smooth and discrete structures.
This is based on a work under the supervision of professor Jost; https://arxiv.org/abs/2105.02567

HOMOLOGICAL PERCOLATION ON A TORUS

PAUL DUNCAN

Two central objects of study in percolation theory are site percolation
and bond percolation, which are the random graphs induced by taking
each vertex or edge respectively, independently at random with proba-
bility p from the underlying graph. We consider the topology of random
cell complexes that generalize each of these models within a large torus
T

d. Bond percolation in the integer lattice Z
d, is generalized to pla-

quette percolation, in which the full (i − 1)-hypercubical skeleton is
included, and then i-cells are added randomly. Site percolation on the
triangular lattice is equivalent to a random subset of cells in the hexag-
onal tiling of the plane, which can be generalized to a random subset of
the permutohedral tiling of higher dimensional space. Bobrowski and
Skraba defined homological percolation within a random subspace as
the appearance of a “giant cycle”, or a cycle in the random subcom-
plex that remains nontrivial under the map on homology induced by
inclusion into the ambient space. We show that homological percola-
tion in our models exhibits a sharp phase transition for each dimension
at which all possible giant cycles appear, with a 1-dimensional thresh-
old that is consistent with classical percolation. Moreover, in the case
of percolation in dimension i = d/2, the phase transition appears at
p = 1/2, a higher dimensional analogue to the classical Harris-Kesten
theorem. This is joint work with Matthew Kahle at the Ohio State Uni-
versity (mkahle@math.osu.edu) and Benjamin Schweinhart at George
Mason University (bschwei@gmu.edu).
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The Generalized Persistence Diagram Encodes the
Bigraded Betti Numbers

Woojin Kim1 and Samantha Moore2

1Department of Mathematics, Duke University*

2Department of Mathematics, University of North Carolina at Chapel Hill†

February 1, 2022

Abstract

We show that the generalized persistence diagram (introduced by Kim and Mémoli) en-
codes the bigraded Betti numbers of finite 2-parameter persistence modules [1]. More in-
terestingly, we show that the bigraded Betti numbers can be visually read off from the gen-
eralized persistence diagram in a manner parallel to how the bigraded Betti numbers are
extracted from interval decomposable modules. Our results imply that all of the invariants
of 2-parameter persistence modules that are computed by the software RIVET are encoded
in the generalized persistence diagram. In addition, we verify that a certain recent invari-
ant of finite 2-parameter persistence modules that was introduced by Asashiba et al. also
encodes the bigraded Betti numbers.
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Extracting Persistent Clusters in Dynamic Data via Möbius inversion
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January 30, 2022

Abstract

Identifying and representing clusters in time-varying network data is of particular importance when study-
ing collective behaviors emerging in nature, in mobile device networks or in social networks. Based on com-
binatorial, categorical, and persistence theoretic viewpoints, we establish a stable functorial pipeline for the
summarization of the evolution of clusters in a time-varying network.

We first construct a complete summary of the evolution of clusters in a given time-varying network over
a set of entities X of which takes the form of a formigram. This formigram can be understood as a certain
Reeb graph R which is labeled by subsets of X . By applying Möbius inversion to the formigram in two
different manners, we obtain two dual notions of diagram: the maximal group diagram and the persistence
clustergram, both of which are in the form of an ‘annotated’ barcode. The maximal group diagram consists of
time intervals annotated by their corresponding maximal groups — a notion due to Buchin et al., implying
that we recognize the notion of maximal groups as a special instance of generalized persistence diagram
by Patel. On the other hand, the persistence clustergram is mostly obtained by annotating the intervals in
the zigzag barcode of the Reeb graph R with certain merging/disbanding events in the given time-varying
network.

We show that both diagrams are complete invariants of formigrams (or equivalently of trajectory grouping
structure by Buchin et al.) and thus contain more information than the Reeb graph R. This is joint work with
Facundo Mémoli. A preprint is available in https://arxiv.org/abs/1712.04064 [v5].



TOPOLOGY OF RANDOM 2-DIMENSIONAL CUBICAL

COMPLEXES

MATTHEW KAHLE, ELLIOT PAQUETTE, AND ÉRIKA ROLDÁN

Abstract. We study a natural model of random 2-dimensional cubical
complex which is a subcomplex of an n-dimensional cube, and where
every possible square 2-face is included independently with probability
p. Our main result exhibits a sharp threshold p = 1/2 for homology
vanishing as n → ∞. This is a 2-dimensional analogue of the Burtin
and Erdős–Spencer theorems characterizing the connectivity threshold
for random graphs on the 1-skeleton of the n-dimensional cube.

Our main result can also be seen as a cubical counterpart to the
Linial–Meshulam theorem for random 2-dimensional simplicial complexes.
However, the models exhibit strikingly different behaviors. We show
that if p > 1 − √

1/2 ≈ 0.2929, then with high probability the fun-
damental group is a free group with one generator for every maximal
1-dimensional face. As a corollary, homology vanishing and simple con-
nectivity have the same threshold, even in the strong “hitting time”
sense. This is in contrast with the simplicial case, where the thresh-
olds are far apart. The proof depends on an iterative algorithm for
contracting cycles — we show that with high probability the algorithm
rapidly and dramatically simplifies the fundamental group, converging
after only a few steps.

Extended Abstract: Main Results. Denote the n-dimensional cube by
Qn = [0, 1]n, and the set of vertices of the n-dimensional cube by Qn

0 . This
makes Qn

0 = {0, 1}n, which is the set of all n-tuples with binary entries.
More generally, denote by Qn

k the k-skeleton of Qn. For example, Qn
1 is

the graph with vertex set Qn
0 and an edge (a 1-face) between two vertices

if and only if they differ by exactly one coordinate. Define the random 2-
dimensional cubical complex Q2(n, p) as having 1-skeleton Qn

1 and including
each 2-dimensional face of Qn independently with probability p.

Date: January 31, 2022.
Key words and phrases. stochastic topology, cubical complexes, random groups.
The first author was supported by NSF DMS #1547357, DMS #2005630, and CCF

#1740761. He is also grateful to the Simons Foundation for a Simons Fellowship, and to
the Deutsche Forschungsgemeinschaft (DFG) for a Mercator Fellowship.

The third author was supported in part by NSF-DMS #1352386 and NSF-DMS
#1812028. She has also received funding from the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sk�lodowska-Curie grant agreement No
754462.
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The space Q2(n, p) is a cubical analogue of the random simplicial complex
Y2(n, p) introduced by Linial and Meshulam in [3], whose theory is well–
developed. The random complex Y2(n, p) is defined by taking the complete
1-skeleton of the n-dimensional simplex Δn, and including into it each 2-face
independently and with probability p. In this way, Q2(n, p) is constructed
in exactly the same way as Y2(n, p), except that the underlying polytope
Δn is replaced by Qn. The space Q2(n, p) is also a 2-dimensional version
of the random cubical graph studied by Burtin [1], Erdős and Spencer [2],
and others. More precisely, let Q(n, p) denote the random subgraph defined
by including all vertices of Qn, i.e. Qn

0 , and including each edge in Qn
1 in-

dependently with probability p. One can view Q(n, p) as a natural cubical
analogue of G(n, p), the Bernoulli or Erdős-Rényi random graph. In the
rest of this abstract we state our main results.

Theorem 0.1. With Q ∼ Q2(n, p) if p > 1/2, then π1(Q) = 0 asymp-
totically almost surely. Conversely, if p ≤ 1/2, then whp there are finitely
generated groups G and F so that π1(Q) ∼= G ∗ F and where F is a free
group of rank at least 2.

Theorem 0.2. For p > 1− (12)
1/2, with high probability, for Q ∼ Q2(n, p)

π1(Q) ∼= (Z ∗ Z ∗ · · · ∗ Z)
︸ ︷︷ ︸

N

,

where N denotes the number of isolated 1-faces in Q.
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QUANTIFYING THE HOMOLOGY OF PERIODIC SIMPLICIAL COMPLEXES

ADAM ONUS1, SCHOOL OF MATHEMATICAL SCIENCES, QUEEN MARY UNIVERSITY OF LONDON

AND VANESSA ROBINS2, RESEARCH SCHOOL OF PHYSICS, AUSTRALIAN NATIONAL UNIVERSITY

Spatially periodic point patterns are important scientific models, for example of atomic positions in crys-
talline materials. Associated periodic graphs and simplicial complexes also arise when modelling any large
homogeneous data set (c.f., [1, 4]). These infinite complexes are described efficiently using a finite quotient
space and translation group action. Both models stem from the familiar covering space relationship between
R

n and the n-dimensional torus.
Two eminent goals in studying the finite quotient spaces that arise from periodic simplicial complexes

include

‚ classification of finite representations, and
‚ extrapolation of topological structure from the quotient.

Classification is challenging because the translation group is not unique; this has been studied extensively
for the case of connected graphs (c.f., [3]). Structure extrapolation is complicated by the potential for
cycles in a periodic complex to disappear in the quotient space, or conversely for the quotient space to have
toroidal cycles which do not lift to a cycle in the periodic complex. This can cause weird effects such as
disconnected periodic complexes having connected quotient spaces, or contractible periodic complexes having
non-contractible quotient spaces.

The ultimate goal is to recover the homology of a periodic simplicial complex from a relatively small
quotient space and minimal additional data. We focus on how to identify and distinguish toroidal cycles in
a quotient space from true cycles of the periodic complex, and how to identify and construct cycles of the
periodic complex that become trivial in the quotient space.

In the case of periodic graphs we show that by endowing edges in a quotient graph with appropriate weights
in Z

d as per [2] we can entirely reconstruct the 0- and 1-dimensional homology. For higher dimensional
complexes there is no natural analogue of these weights, and instead we introduce a new application of
Mayer-Vietoris spectral sequences to provide a heuristic to identify toroidal cycles in periodic simplicial
complexes.
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Abstract

At the intersection of Topological Data Analysis and machine learning, the

field of cellular signal processing has advanced rapidly in recent years [1, 5]. In

this context, a signal is a (co)chain in a (co)chain complex endowed with a degree-

wise inner product, and is processed using the combinatorial Laplacian and its

associated Hodge decomposition.

The main goal of this paper is to reduce and reconstruct a based chain complex

together with a set of signals in such a way that minimizes their reconstruction er-

ror. Our approach is rooted in tools of algebraic discrete Morse theory [6], which is

able to efficiently generate deformation retracts that reduce the size of the complex

while preserving its global topological structure. For this reason, discrete Morse

theory has been widely used to speed up computations of (persistent) homology

by reducing the size of complexes [4].

In this paper, we explore how such deformation retracts compress and recon-

struct signals on the complex. Specifically, we prove that parts of a signal’s Hodge

decomposition are preserved under compression and reconstruction for specific

classes of discrete Morse deformation retracts of a given based chain complex.

Understanding Hodge decomposition of signals requires a careful study of how

the choice of algebraic decomposition – or base – of a based chain complex interacts

with the reconstruction of the Hodge decomposition components under discrete

Morse matchings. As part of this study, we show that any deformation retract of

a real finite-dimensional chain complex is equivalent to a Morse matching in some

base.

1



Finally, we provide an algorithm to compute Morse matchings that minimize

the reconstruction error for any inner product. We perform several experiments

that support our theoretical results and show that our algorithm significantly

outperforms randomly generated matchings. We believe that such algorithms

could be used in pooling layers of simplicial neural networks [2, 3].
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We study a model of random graph where vertices are n i.i.d. uniform
random points on the unit sphere Sd, and a pair of vertices is connected if
the geodesic distance between them is at least π − ε. We are interested in the
chromatic number of this graph as n tends to infinity.

Our main point is that if ε → 0 slowly enough as n → ∞, then topological
lower bounds on chromatic number are tight. The idea of using topological
obstructions to the chromatic number of graphs dates back to Lóvasz in 1978,
when he used such constructions to prove Kneser’s conjecture. This contrasts
with the situation studied by Kahle in 2007, where topological lower bounds are
not efficient for the chromatic number of Erdős–Rényi random graphs.

It is not too hard to see that if ε > 0 is small and fixed, then the chromatic
number is d + 2 with high probability. We show that this holds even if ε → 0
slowly enough. We quantify the rate at which ε can tend to zero and still
have the same chromatic number. The proof depends on combining topological
methods (namely the Lyusternik–Schnirelman–Borsuk theorem) with geometric
probability arguments. The rate we obtain is best possible, up to a constant
factor — if ε → 0 faster than this, we show that the graph is (d + 1)-colorable
with high probability.

Finally, we briefly discuss how this construction can be generalized to other
metric spaces where instead of having an antipodality action, we have a free
G-action, for any finite group G. In this setting, rather than the LSB-Theorem,
the topological obstructions arise from studing the induced G-action on the as-
sociated Hom complex.

Keywords: random graphs, topological combinatorics, Borsuk–Ulam.
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What are weather regimes? A topologist’s answer

Nina Otter

Abstract

It has long been suggested that the mid-latitude atmospheric circulation possesses what
has come to be known as “weather regimes”, which can roughly be categorised as regions of
phase space with above-average density. Their existence and behaviour have been extensively
studied in meteorology and climate science, due to their potential for drastically simplify-
ing the complex and chaotic mid-latitude dynamics. Several well-known, simple non-linear
dynamical systems have been used as toy-models of the atmosphere in order to understand
and exemplify such regime behaviour. Nevertheless, no agreed-upon and clear-cut definition
of a “regime” exists in the literature, and unambiguously detecting their existence in the
atmospheric circulation is often hindered by the high dimensionality of the system.

In this talk I will first give an overview of some of the approaches used to study and define
weather regimes. I will then proceed to propose a definition of weather regime that equates the
existence of regimes in a dynamical system with the existence of non-trivial topological struc-
ture of the system’s attractor. I will discuss how this approach is computationally tractable,
practically informative, and identifies the relevant regime structure across a range of examples.

This talk is based on joint work with Kristian Strommen, Matthew Chantry and Joshua
Dorrington.

Thoughts on Teaching Topology

Vin de Silva

Abstract

I have taught classes in topology for many years now. I will share some thoughts on how
I approach it, and how my teaching differs from what I experienced as an undergraduate in
the early 1990s, while drawing on what I experienced in primary school in the late 1970s. In
particular, I will outline a development of ideas in which homology theory seems to invent
itself, and in which cohomology theory is presented simultaneously in an essential way.
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